26 resultados para Mice, Transgenic

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Individuals infected with mycobacteria are likely to experience episodes of concurrent infections with unrelated respiratory pathogens, including the seasonal or pandemic circulating influenza A virus strains. We analyzed the impact of influenza A virus and mycobacterial respiratory coinfection on the development of CD8 T cell responses to each pathogen. Coinfected mice exhibited reduced frequency and numbers of CD8 T cells specific to Mycobacterium bovis bacille Calmette-Guérin (BCG) in the lungs, and the IFN-γ CD8 T cell response to BCG-encoded OVA was decreased in the lungs of coinfected mice, when compared with mice infected with BCG alone. Moreover, after 2 wk of infection, mice coinfected with both pathogens showed a significant increase in the number of mycobacteria present in the lung compared with mice infected with BCG only. Following adoptive transfer into coinfected mice, transgenic CD8 T cells specific for OVA257–264 failed to proliferate as extensively in the mediastinal lymph nodes as in mice infected only with BCG-OVA. Also noted was a reduction in the proliferation of BCG-specific CD4 transgenic T cells in mice coinfected with influenza compared with mice infected with BCG alone. Furthermore, phenotypic analysis of CD11c+ dendritic cells from mediastinal lymph nodes of the infected mice showed that coinfection was associated with decreased surface expression of MHC class II and class I. Thus, concurrent pulmonary infection with influenza A virus is associated with decreased MHC expression on dendritic cells, reduced activation of BCG-specific CD4 and CD8 T cells, and impaired clearance of mycobacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disorder, involving psychiatric, cognitive and motor symptoms, caused by a CAG-repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. Oxidative stress and excitotoxicity have previously been implicated in the pathogenesis of HD. We hypothesized that N-acetylcysteine (NAC) may reduce both excitotoxicity and oxidative stress through its actions on glutamate reuptake and antioxidant capacity. The R6/1 transgenic mouse model of HD was used to investigate the effects of NAC on HD pathology. It was found that chronic NAC administration delayed the onset and progression of motor deficits in R6/1 mice, while having an antidepressant-like effect on both R6/1 and wild-type mice. A deficit in the astrocytic glutamate transporter protein, GLT-1, was found in R6/1 mice. However, this deficit was not ameliorated by NAC, implying that the therapeutic effect of NAC is not due to rescue of the GLT-1 deficit and associated glutamate-induced excitotoxicity. Assessment of mitochondrial function in the striatum and cortex revealed that R6/1 mice show reduced mitochondrial respiratory capacity specific to the striatum. This deficit was rescued by chronic treatment with NAC. There was a selective increase in markers of oxidative damage in mitochondria, which was rescued by NAC. In conclusion, NAC is able to delay the onset of motor deficits in the R6/1 model of Huntington's disease and it may do so by ameliorating mitochondrial dysfunction. Thus, NAC shows promise as a potential therapeutic agent in HD. Furthermore, our data suggest that NAC may also have broader antidepressant efficacy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the effects of riluzole (Ril), creatine (Cr) and a combination of these treatments on the onset and progression of clinical signs and neuropathology in an animal model of familial amyotrophic lateral sclerosis, the G93A transgenic mouse (n=13–17 per group). The onset of clinical signs was delayed (P<0.05) by about 12 days in all treatment groups compared with control; however, no differences occurred between treatments. All animals were killed at 199 days of age. At the end of the experimental period the severity of clinical signs was less (P<0.05) with all treatments compared with control. Again no differences between treatments were observed. The treatments had no effect on the number of neurons in ventral horns of the lumbar region of the spinal cord. Transgenic mice ingesting Cr displayed elevated (P<0.05) total Cr levels in cerebral hemispheres (5%) and spinal cord (8%), but not skeletal muscles. These data demonstrate that treatment with Ril and Cr were both effective in delaying disease onset and clinical disability. To the age of killing, no additional benefit was conferred by co-administration of Ril and Cr.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The final steps in the absorption and excretion of copper at the molecular level are accomplished by 2 closely related proteins that catalyze the ATP-dependent transport of copper across the plasma membrane. These proteins, ATP7A and ATP7B, are encoded by the genes affected in human genetic copper-transport disorders, namely, Menkes and Wilson diseases. We studied the effect of copper perfusion of an isolated segment of the jejunum of ATP7A transgenic mice on the intracellular distribution of ATP7A by immunofluorescence of frozen sections. Our results indicate that ATP7A is retained in the trans-Golgi network under copper-limiting conditions, but relocalized to a vesicular compartment adjacent to the basolateral membrane in intestines perfused with copper. The findings support the hypothesis that the basolateral transport of copper from the enterocyte into the portal blood may involve ATP7A pumping copper into a vesicular compartment followed by exocytosis to release the copper, rather than direct pumping of copper across the basolateral membrane.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both copper transporting ATPases, ATP7A and ATP7B, are expressed in mammary epithelial cells but their role in copper delivery to milk has not been clarified. We investigated the role of ATP7A in delivery of copper to milk using transgenic mice that over-express human ATP7A. In mammary gland of transgenic mice, human ATP7A protein was 10- to 20-fold higher than in control mice, and was localized to the basolateral membrane of mammary epithelial cells in lactating mice. The copper concentration in the mammary gland of transgenic dams and stomach contents of transgenic pups was significantly reduced compared to non-transgenic mice. The mRNA levels of endogenous Atp7a, Atp7b, and Ctr1 copper transporters in the mammary gland were not altered by the expression of the ATP7A transgene, and the protein levels of Atp7b and ceruloplasmin were similar in transgenic and non-transgenic mice. These data suggest that ATP7A plays a role in removing excess copper from the mammary epithelial cells rather than supplying copper to milk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The protein affected in Menkes disease, ATP7A, is a copper (Cu)-transporting P-type ATPase that plays an important role in Cu homeostasis, but the full extent of this role has not been defined at a systemic level. Transgenic mice that overexpress the human ATP7A from the chicken β-actin composite promoter (CAG) were used to further investigate the physiological function of ATP7A. Overexpression of ATP7A in the mice caused disturbances in Cu homeostasis, with depletion of Cu in some tissues, especially the heart. To investigate the effect of overexpression of ATP7A when dietary Cu intake was markedly increased, normal and transgenic mice were exposed to drinking water containing 300 mg/L of Cu as Cu acetate for 3 mo. Cu exposure resulted in partial restoration of heart Cu concentrations in male transgenic mice. Despite the extended period of Cu exposure, Cu concentrations in the liver remained relatively unaffected, with a significant increase in male nontransgenic mice. Liver pathology was unremarkable except for small areas of fibrosis that were detected only in livers of the Cu-exposed transgenic mice. Intracellular localization of ATP7A in various tissues was not affected by Cu exposure. Plasma Cu concentration and ceruloplasmin oxidase activity were reduced in both Cu-exposed transgenic and nontransgenic mice. The expression levels of other candidate Cu homeostatic proteins, endogenous Atp7b, ceruloplasmin, Ctr1, and transgenic ATP7A were not altered significantly by Cu exposure. Overall, mice are remarkably resistant to high Cu loads and the overexpression of ATP7A has only moderate effects on the response to Cu exposure. © 2008 American Society for Nutrition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation appears to be relatively safe based on data from short-term and intermediate-term human studies and results from several therapeutic trials. The purpose of the current study was to characterize pathological changes after intermediate-term and long-term CrM supplementation in mice [healthy control and SOD1 (G93A) transgenic] and rats (prednisolone and nonprednisolone treated). Histological assessment (18-20 organs/tissues) was performed on G93A mice after 159 days, and in Sprague-Dawley rats after 365 days, of CrM supplementation (2% wt/wt) compared with control feed. Liver histology was also evaluated in CD-1 mice after 300 days of low-dose CrM supplementation (0.025 and 0.05 g · kg-1 · day-1) and in Sprague-Dawley rats after 52 days of CrM supplementation (2% wt/wt) with and without prednisolone. Areas of hepatitis were observed in the livers of the CrM-supplemented G93A mice (P < 0.05), with no significant inflammatory lesions in any of the other 18-20 tissues/organs that were evaluated. The CD-1 mice also showed significant hepatic inflammatory lesions (P < 0.05), yet there was no negative effect of CrM on liver histology in the Sprague-Dawley rats after intermediate-term or long-term supplementation nor was inflammation seen in any other tissues/organs (P = not significant). Dietary CrM supplementation can induce inflammatory changes in the liver of mice, but not rats. The observed inflammatory changes in the murine liver must be considered in the evaluation of hepatic metabolism in CrM-supplemented mice. Species differences must be considered in the evaluation of toxicological and physiological studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction
Angiotensin II (Ang II) is known to induce cardiac growth and modulate myocardial contractility. It has been reported that elevated levels of endogenous Ang II contribute to the development of cardiac hypertrophy in hypertensives. However, the long-term functional effects of cardiac exposure to Ang II in normotensives is unclear.

A recently developed transgenic mouse (TG1306/1R), in which cardiac-specific overproduction of Ang II produces primary hypertrophy, provides a new experimental model for investigation of this phenotype. The aim of the present study was to use this model to investigate whether there is a functional deficit in primary hypertrophy that may predispose to cardiac failure and sudden death. We hypothesised that primary cardiac hypertrophy is associated with mechanical dysfunction in the basal state.

Methods
Normotensive heterozygous TG1306/1R mice harbouring multiple copies of a cardiac-specific rat angiotensinogen gene were studied at age 30—40 weeks and compared with age-matched wild-type littermates. Left ventricular function was measured ex vivo in bicarbonate buffer-perfused, Langendorffmounted hearts ( at a perfusion pressure of 80 mmHg, 37°C) using a fluid-filled PVC balloon interfaced to a pressure transducer and digital data acquisition system.

Results
There was no difference in the mean (±SEM) intrinsic heart rate of TG1306/1R and wild-type control mice (357.4±11.8 vs. 367.5±20.9 bpm, n=9 & 7). Under standardised end-diastolic pressure conditions, TG1306/1R hearts exhibited a significant reduction in peak developed pressure (132.2±9.4 vs. 161.5±3.1 mmHg, n=9 & 7, p<0.05) and maximum rate of pressure development (3566.7±323.7 vs. 4486.3±109.4 mmHg, n=9 & 7, p<0.05). TG1306/1R mice show a significant correlation between incidence of arrhythmia and increasing heart size (Spearman's correlation coefficient 0.61).

Conclusion
These data demonstrate that chronic in vivo exposure to elevated levels of intra-cardiac Ang II is associated with significant contractile abnormalities evident in the ex vivo intact heart. Our findings suggest that endogenous overproduction of cardiac Ang II, independent of changes in blood pressure, is sufficient to induce ventricular remodelling that culminates in impaired cardiac function which may precede failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis Islet transplantation is a potential cure for diabetes; however, rates of graft failure remain high. The aim of the present study was to determine whether amyloid deposition is associated with reduced beta cell volume in islet grafts and the recurrence of hyperglycaemia following islet transplantation.

Methods We transplanted a streptozotocin-induced mouse model of diabetes with 100 islets from human IAPP (which encodes islet amyloid polypeptide) transgenic mice that have the propensity to form islet amyloid (n = 8–12) or from non-transgenic mice that do not develop amyloid (n = 6–10) in sets of studies that lasted 1 or 6 weeks.

Results Plasma glucose levels before and for 1 week after transplantation were similar in mice that received transgenic or non-transgenic islets, and at that time amyloid was detected in all transgenic grafts and, as expected, in none of the non-transgenic grafts. However, over the 6 weeks following transplantation, plasma glucose levels increased in transgenic but remained stable in non-transgenic islet graft recipients (p < 0.05). At 6 weeks, amyloid was present in 92% of the transgenic grafts and in none of the non-transgenic grafts. Beta cell volume was reduced by 30% (p < 0.05), beta cell apoptosis was twofold higher (p < 0.05), and beta cell replication was reduced by 50% (p < 0.001) in transgenic vs non-transgenic grafts. In summary, amyloid deposition in islet grafts occurs prior to the recurrence of hyperglycaemia and its accumulation over time is associated with beta cell loss.

Conclusions/interpretation Islet amyloid formation may explain, in part, the non-immune loss of beta cells and recurrence of hyperglycaemia following clinical islet transplantation.